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ABSTRACT: Particulate matter with a diameter between 1.0–2.5 µm (PM2.5) is an 
atmospheric pollutant that primarily forms as a product of combustion. Because of the risk 
to human health, the EPA regulates PM2.5 using Air Quality Monitoring Stations (AQMS). 
Due to extreme cost, AQMS are only located in regions of large population. However, low-
cost sensors, such as the Purple-Air PA-II, have been developed to provide PM2.5 data in 
less dense regions of population. Previous studies have shown that under low-pollution 
levels (<25 µg m-3), the PA-II unit is accurate when compared to the EPA AQMS. In 
contrast, under moderate to high pollution levels (>25 µg m-3) and under high relative 
humidity, the PA-II overestimates PM2.5 concentration. In summer 2023, wildfires raged 
across northern Canada, leading to thick smoke protruding into the southeastern United 
States. North Carolina was affected by this smoke as there were several days where 
reported PM2.5 concentrations exceeded the EPA daily mean limit of 35 µg m-3. This work 
will examine the performance of the PA-II unit compared to EPA AQMS in North Carolina 
in June and July 2023, providing the opportunity to identify the effects of wildfire smoke 
on the PA-II unit in a region known to have high relative humidity in the summer months. 
Insight provided from this study will help inform residents of North Carolina on the integrity 
of the PA-II data. 

  



Introduction 
An aerosol is a solid or liquid particle suspended in a gas. Three different 

classifications of aerosols exist, based upon the size of the particle. Particles with a 
diameter greater than 2.5 µm are classified as coarse aerosols (PM10), particles with a 
diameter between 0.1–2.5 µm are classified as fine aerosols (PM2.5), and particles with a 
diameter less than 0.1 µm are classified as ultrafine aerosols (PM1.0) (Jacobson 2012, p. 
101). Fossil fuel combustion, such as power plants, waste incinerators, automobiles, 
airplanes, etc. are the leading sources of PM2.5. When inhaled by humans, the small size 
of PM2.5 allows it to travel far into the lungs, and even into the bloodstream (Ling and van 
Eeden 2009). The abundance of PM2.5 in the atmosphere results in negative health 
impacts for many humans across the globe (Cohen et al. 2017). Due to the danger it 
poses to humans, PM2.5 is extensively studied. 

EPA Regulations 
In the United States, the Environmental Protection Agency (EPA) is tasked with setting 

the National Ambient Air Quality Standards (NAAQS) for criteria air pollutants. The EPA 
identifies the criteria pollutants as ozone, nitrogen dioxide, carbon monoxide, sulfur 
dioxide, lead, and PM (Jacobson 2012, p. 178). These six pollutants are the most 
dangerous to human health. The NAAQS are in place to establish pollution limits one 
region (usually a city or county) can allow for a given period. The annual mean NAAQS 
value for PM2.5 is 9 µg m-3 and the daily mean NAAQS value for PM2.5 is 35 µg m-3 
(Feenstraa et al. 2019). The EPA regularly reviews the NAAQS to determine if they need 
to be lowered to continuously protect humans and the environment. A known toxin to 
humans, PM2.5 causes millions of deaths per year worldwide (Cohen et al. 2017). Without 
the NAAQS, people and businesses could pollute freely, which would cause human harm 
(Cohen et al. 2017). The EPA uses highly advanced air quality measuring devices to 
record PM2.5, which provide the data used in the NAAQS calculations. These devices are 
known as Air Quality Monitoring Stations (AQMS) and are deployed across the United 
States. They calculate PM2.5 concentrations using the Federal Equivalent Method (FEM), 
which uses beta ray attenuation to measure particles (Ardon-Dryer et al. 2020). The EPA 
only installs AQMS in cities or counties with large populations due to the cost of initial 
manufacturing and frequent maintenance. Although AQMS cost tens of thousands of 
dollars, their frequent calibration and utilization of the FEM makes their data trustworthy. 
But due to the high spatial resolution of PM2.5 observations, a region may have 
nonuniform PM2.5 concentrations if one specific area within that region has a point source 
of pollution. This will cause conflicting statuses of attainment, meaning that a region can 
meet the NAAQS requirement, despite polluting lots of PM2.5. As the NAAQS continue to 
grow more stringent over time (Jacobson 2012, pp. 178–187), questions arise regarding 
whether enough AQMS exist to assess a region's attainment status (i.e., the ability to 
meet the defined NAAQS requirements). 

Low-cost sensors 
A practical, alternative method of measuring air quality may come with the adaption of 

low-cost sensors. Low-cost air quality monitors can measure the composition of ambient 



air and are easy for the public to use. These devices range from a few hundred to a few 
thousand dollars and continue to grow in popularity as a means of measuring air quality 
(Feenstraa et al. 2019). Due to their price, low-cost sensors can be placed in regions that 
do not have an AQMS, allowing for the collection of air quality data in less populated 
regions of the country. One of the most popular versions of the low-cost sensor is the 
PurpleAir PA-II unit. This device is designed to measure PM1.0, PM2.5, and PM10 in real-
time and report it to the PurpleAir website to display live (Ardon-Dryer et al. 2020). This 
study will focus on the use of the PA-II unit. Due to their ease-of-access and ability to 
provide data to consumers, there are thousands of PA-II sensors deployed worldwide, 
resulting in a large amount of available air quality data. However, experts have raised 
questions regarding the value of PA-II data because of the lack of research done to verify 
its correctness (Ardon-Dryer et al. 2020).  

Many studies have aimed to determine if the PA-II unit reports data that is in 
agreement with reference monitors (e.g., Feenstraa et al. 2018; Ardon-Dryer et al. 2020; 
Magi et al. 2020; Wallace et al. 2021; Barkjohn et al. 2022). Clements et al. (2017) showed 
that changes in atmospheric variables such as temperature, air pressure, and relative 
humidity (RH) can cause the PA-II to provide inaccurate data. High RH is a recurring issue 
that affects the monitors’ ability to report accurate PM2.5 concentration. Under humid 
conditions, PM2.5 can exhibit hygroscopic growth if water vapor were to condense upon 
it, causing an inaccurate overestimation of PM2.5 concentration (Ardon-Dryer et al. 2020). 

Corrections of PA-II data 
Due to the limitations of the PA-II, researchers often apply corrections to the PM2.5 

data to bring the unit in agreement with a reference sensor (usually an AQMS). PurpleAir 
has developed their own method of correction based on advice from Plantower, the 
manufacturer of the particulate matter sensors within the PA-II unit. Wallace et al. (2021) 
compared PA-II sensors with AQMS in California and derived a method of correction that 
they deemed better than the Plantower method. Their method relied on calculating the 
volume of the particles based on the quantity recorded by the sensor and then used a 
constant density to calculate mass. Magi et al. (2020) and Ardon-Dryer et al. (2020) used 
a multivariate linear regression to correct the PA-II PM2.5 values using parameters of 
temperature, RH, and the recorded AQMS PM2.5 values. Despite variations in methods 
for calculating correction factors, those working with the PA-II unit generally reached a 
consensus that some kind of correction becomes necessary for the data to suit scientific 
use (e.g., Ardon-Dryer et al. 2020; Magi et al. 2020; Wallace et al. 2021; Barkjohn et al. 
2022). Most research correcting PA-II data has been done during periods of low air 
pollution, which leaves a gap in knowledge about the PA-II's performance during high air 
pollution periods. 

PA-II performance during wildfire/high pollution events 
Exceptionally bad air pollution events provide unique opportunities to study the PA-II 

unit due to elevated pollution levels. Wildfires are a large source of atmospheric PM2.5. 
Among many gases, combustion releases carbon dioxide, nitrogen dioxide, nitrogen 
monoxide, volatile organic compounds, and PM2.5 into the atmosphere (Jaffe et al. 2020). 
Due to vast amounts of smoke during wildfires, PM2.5 concentrations can rise above 250–



500 µg m-3, which are incredibly unhealthy (Barkjohn et al. 2022). Typically, low-cost 
sensors measure the air under healthy conditions (0–50 µg m-3), but during wildfires, 
PM2.5 concentrations increase, allowing for analysis of low-cost sensor performance 
against AQMS under these conditions.  

Gupta et al. (2018) and Barkjohn et al. (2022) have tested the PA-II’s performance 
during wildfires. Gupta et al. (2018) studied the PA-II unit for wildfires in California. They 
did not use a correction factor for the raw PM2.5 concentrations reported by the PA-II and 
found that the unit tended to overestimate PM2.5 values when compared to an AQMS 
(Gupta et al. 2018). Barkjohn et al. (2022) studied the PA-II unit for wildfires across the 
continental United States and found that if smoke concentration was less than 200 µg m-

3, the PA-II unit usually responded in a linear fashion; this means that a linear regression 
could be used to correct the data (e.g., Magi et al. 2020 and Ardon-Dryer et al. 2020). But 
once smoke concentration became greater than 200 µg m-3, the PA-II unit responded in 
a non-linear fashion (Barkjohn et al. 2022). They discovered that the best method for 
correcting PA-II data at very high smoke concentrations was to apply a quadratic 
regression (Barkjohn et al. 2022). The results from both Gupta et al. (2018) and Barkjohn 
et al. (2022) indicate that it may be necessary to apply a correction factor to the PA-II data 
to compare it to data recorded by an AQMS for wildfire events. 

Another consideration with severe wildfire smoke is the possibility of increased cloud 
formation due to lower temperatures. If smoke is thick enough to significantly prevent 
sunlight from reaching the surface, daytime temperatures will decrease, which may cause 
clouds to form (Conrick et al. 2021). Cloud formation is also induced by the PM2.5 acting 
as cloud condensation nuclei. If the high smoke concentrations cause clouds to form, the 
PA-II unit may begin to overestimate actual PM2.5 concentration due to the increased 
humidity. This is potentially the reason behind Barkjohn et al. (2022) figuring out that a 
quadratic regression was necessary to correct PA-II PM2.5 values at high smoke 
concentrations. 

Numerous studies have investigated trends in PA-II data during wildfires, with a 
significant portion of them conducted in the western region of the United States (e.g., 
Gupta et al. 2018 and Barkjohn et al. 2022). As previously stated, under high RH 
conditions, the PA-II tends to overestimate the actual PM2.5 concentration. Given that the 
western United States is drier than the east (i.e. deserts in the west; temperate forests in 
the east), there is the possibility that a moister climate could cause the PA-II to behave 
differently depending on its location. Little research exists on the PA-II during wildfires in 
the eastern United States, leaving a gap in known vulnerabilities of the sensor. In the 
summer of 2023, wildfires raged across northern Canada, leading to thick smoke 
protruding into the southeastern United States, causing dreadful air quality (North 
Carolina Department of Environmental Quality). North Carolina (NC) was especially 
affected by this smoke as there were several days where reported PM2.5 concentrations 
exceeded the daily mean NAAQS value of 35 µg m-3. This work will examine the 
performance of the PA-II unit compared to EPA AQMS in NC in June and July 2023, 
providing the opportunity to identify the effects of wildfire smoke on the PA-II unit in a 
region known to have high relative humidity in the summer months. 



Data and Methods 
Acquisition of Data 

The NASA Worldview satellite imagery tool (NASA 2023) was used to identify the date 
range when NC was affected by Canadian wildfire smoke. The corrected reflectance color 
band makes wildfire smoke easily identifiable because it has a grey tint, which is 
distinguishable from clouds. This color band is derived from the Visible Infrared Imaging 
Radiometer Suite aboard the NASA JPSS-1 satellite, with an image resolution of 250 m 
(NASA 2023). Daily imagery from 1 April 2023 through 31 August 2023 showed Canadian 
wildfire smoke covering some or all of NC for most of June and July. To grasp a full picture 
of how smoke affected PM2.5 concentrations at the air quality monitors, it was determined 
that the date range for the study would be 29 May 2023 through 29 July 2023. Wildfire 
smoke began its intrusion into NC during the first week of June, so beginning the date 
range on 29 May allowed for the inclusion of a few days of clean air, providing the 
comparison of PA-II to AQMS under low PM2.5 concentrations. The beginning of August 
showed that the Canadian wildfire smoke was no longer being forced into NC, so the date 
range was cut off on 29 July. Hourly observations were used, resulting in approximately 
1463 hours of PM2.5 data for each PA-II and AQMS. 

The EPA AirData Map (EPA 2023a) was used to identify all active PM2.5 AQMS in NC. 
Hourly raw PM2.5 concentrations were retrieved from each AQMS for the two-month 
period. To provide an accurate comparison between the AQMS and PA-II, there needed 
to be one PA-II co-located with each AQMS. A radius of 5 miles was determined as the 
maximum allowable distance between the PA-II and AQMS for co-location. This regulation 
helped eliminate co-located pairs that were very far apart, while keeping enough pairs for 
a robust comparison. The EPA Fire and Smoke map (EPA 2023b) was used to identify 
PA-II units that were close to AQMS sites.  The Fire and Smoke map is a tool developed 
by the EPA that displays all AQMS and PA-II units on an interactive map, making air quality 
data accessible.  Once the nearest PA-II unit was identified, its sensor ID was recorded. 
The PurpleAir data download tool was used to acquire hourly averaged PA-II PM2.5 
concentrations for each PA-II unit. After a co-located PA-II unit was identified for each 
AQMS, there were a total of eight sites across NC. The co-located pairs were named 
according to the assigned AQMS site name from the EPA. There are co-located pairs in 
Asheville, Charlotte (Friendship Park), Winston Salem (Hattie Avenue), Greensboro, 
Durham, Raleigh, Triple Oak, and Fayetteville.  

In alignment with previous research, moisture variables were collected to analyze the 
performance of the PA-II during periods of high humidity. The Cardinal Data Retrieval 
System (State Climate Office of North Carolina) was used to pull hourly RH and specific 
humidity data for each co-located pair of PA-II and AQMS from 29 May 2023 to 29 July 
2023. The RH and specific humidity were then time paired to the PA-II and AQMS PM2.5 
data. The weather stations used were a combination of NC ECONet and ASOS sites. The 
Asheville, Greensboro, Durham, and Raleigh co-located pairs utilized the ECONet sites 
of the UNC Asheville Weather Tower, the NC A&T Research Farm, the North Durham 
Water Reclamation Facility, and the Reedy Creek Field Laboratory, respectively. The 
Charlotte, Winston-Salem, Fayetteville, and Triple Oak co-located pairs utilized the ASOS 



sites of Charlotte Douglass International Airport, Smith Reynolds Airport, Fayetteville 
Regional Airport, and Raleigh-Durham International Airport, respectively. 

Previous literature has stated that high RH can cause overestimation by the PA-II units 
under the justification that the PM2.5 grows hygroscopically (Clements et al. 2017 and 
Ardon-Dryer et al. 2020). However, in a meteorological sense, RH is not the best moisture 
variable to measure the vapor content of the atmosphere. RH is dependent on the 
saturation vapor pressure of the air, which is a function of temperature (Petty 2008, p. 
174). Due to this dependence, high RH can be observed during times when it is not 
particularly humid. For these reasons, the decision was made to also investigate specific 
humidity, which is not dependent on temperature. Specific humidity is the ratio of mass of 
water vapor to the total mass of the air and has units of g kg-1 (Petty 2008, p. 73). It is a 
better moisture variable to use when we are concerned with the absolute vapor content 
of the atmosphere. Utilizing both RH and specific humidity will provide the opportunity to 
investigate how the PA-II performs against the AQMS under various humidity levels. 

Comparison of data from co-located pairs 
Two sample t-tests were calculated using the PA-II and AQMS for each co-located pair 

to compare the sample means of the PM2.5 concentrations. Results from the tests 
indicated that all co-located pairs had PM2.5 concentrations that had statistically different 
sample means.   

Scatterplots were then used to gain a visual understanding of the data.  To mask some 
of the PA-II outliers, the axis bounds for each scatterplot were set at 100 µg m-3. Two sets 
of scatterplots were made, one using the RH data, and the other using the specific 
humidity data. For each co-located pair, the PA-II data was plotted against the AQMS 
data, with the humidity variable depicted by the color of the marker. It was immediately 
clear that there were too many overlapping data points to gain a grasp of the role humidity 
played in overestimation. To rectify this, the PM2.5 values were separated into three bins 
corresponding to the value of the humidity variable at that hour. Ardon-Dryer et al. (2020) 
defined high RH as 90% < RH, which served as a baseline in this study. After some 
adjustments, and making an effort to minimize skew, the low RH bin was set at RH <= 
60%, the medium RH bin was set at 60% < RH <= 85%, and the high bin was set at 85% 
< RH. For specific humidity, the absence of previous research made it more difficult to 
define bin widths. Ultimately, equal bin widths were selected, and the low bin was set at 
q <= 10 g kg-1, the medium bin was set at 10 g kg-1 < q <= 16 g kg-1, and the high bin was 
set at 16 g kg-1 < q. These bins were essentially bounded on either end by the minimum 
specific humidity recorded over the period being approximately 4 g kg 1 and the maximum 
specific humidity recorded being approximately 22 g kg-1. Additionally, these binned RH 
and specific humidity plots were made combining all eight co-located sites PM2.5 data, to 
provide the opportunity to identify disparities between a specific co-located site and the 
statewide average. 

A linear regression was calculated for each co-located pair in each humidity bin for 
each humidity variable for PA-II vs AQMS PM2.5 concentrations. The slope and y-intercept 
were used from the regression to plot a line of best fit on each scatterplot corresponding 



to the PM2.5 data. The linear regression also returned the Pearson correlation coefficient 
(R), which was used to calculate the coefficient of determination (R2).   

Results 
Scatterplots of PA-II and AQMS PM2.5 as a function of Relative Humidity 

Figure 1 shows an aggregated scatterplot of PA-II vs AQMS PM2.5 as a function of RH 
for all co-located sites. Figures 2–9 show the resultant scatterplots of PA-II vs AQMS 
PM2.5 as a function of RH at each co-located site.  

The aggregated scatterplot shows that the PA-II overestimated actual PM2.5 
concentrations for all three RH bins (Fig. 1). This is easily identifiable because most of 
the data resides above the 1:1 line.  Data points lying above the 1:1 line indicate 
overestimation because the PA-II reports a higher PM2.5 concentration than its co-located 
AQMS. The 1:1 line is in place to depict the perfect comparison. This line has a slope of 
1.0 and data points falling on this line indicate the PA-II unit and AQMS reported the same 
PM2.5 concentration at that given time, which is the most ideal scenario. And as we see 
with all three RH bins, slopes greater than one indicates that as the AQMS PM2.5 
concentration increased, the PA-II performance decreases (i.e., the PA-II overestimation 
increased with increasing PM2.5 concentration). The high RH bin showed the greatest 
overestimation, with a slope of 1.32. The R2 value was 0.82, which indicates that the linear 
regression line did a decent job of fitting the data. The low RH bin showed the second 
most overestimation, with a slope of 1.16 and R2 value of 0.74. The medium RH bin had 
the lowest overestimation, with a slope of 1.10 and R2 value of 0.62. This R2 value shows 
that the linear regression line did not do as good of a job representing the data, meaning 
that there was more variability. 

When looking at the comparisons of the PA-II vs AQMS units as a function of RH for 
an individual co-located pair, they are like the aggregated scatterplot. Asheville (Fig. 2), 
Charlotte (Fig. 3), Durham (Fig. 4), Fayetteville (Fig. 5), Raleigh (Fig. 7), and Triple Oak 
(Fig. 8) all see positive slopes for all three RH bins. These slopes range from 1.10 – 1.50. 
Across all eight co-located pairs, the low RH bin had an average slope of 1.23, the 
medium RH bin had an average slope of 1.17, and the high RH bin had an average slope 
of 1.33. These average slopes show that the high RH bin saw the most PA-II 
overestimation, while the medium bin saw the least overestimation. The high RH bin had 
the highest mean R2 value of 0.86, while the medium RH bin had the lowest mean R2 of 
0.76.  

Two plots that did not show overestimation were the middle RH bin for Greensboro 
(Fig. 6) and the low and middle RH bins for Winston-Salem (Fig. 9). The middle RH bin 
for Greensboro has a slope of 0.79, which is undoubtedly influenced by many 
underreported PA-II outlier values beyond 100 µg m-3. This could have been caused by a 
piece of trash or larger natural material such as a blade of grass blocking the inlet to the 
PA-II particulate matter sensor. The low and medium RH bins for Winston-Salem (Fig. 9) 
have slopes of 0.99, and 1.00 respectively. This indicates that the PA-II did not show 
increasing overestimation with increasing humidity, which is a good sign. 



Scatterplots of PA-II and AQMS PM2.5 as a function of Specific Humidity 
Figure 10 shows an aggregated scatterplot of PA-II vs AQMS PM2.5 as a function of 

specific humidity for all co-located sites. Figures 11–18 show the resultant scatterplots of 
PA-II vs AQMS PM2.5 as a function of specific humidity at each co-located site.  

Once again, the aggregated scatterplot shows that the PA-II generally overestimated 
actual PM2.5 concentrations for all three specific humidity bins (Fig. 10). We see a large 
percentage of the data residing above the 1:1 line along with positive slopes in each bin. 
The high specific humidity bin showed the greatest overestimation, with a slope of 1.24, 
however, the R2 value was only 0.73, which indicated that the linear regression line did 
not do a great job of fitting the data. The low specific humidity bin showed the second 
most overestimation, with a slope of 1.18. The medium specific humidity bin had the 
lowest overestimation, with a slope of 1.16. There was less variability between the slopes 
of the aggregated plot, but overall, more variability between the data within each bin, as 
the R2 values were not as large as for the RH aggregated plot (Fig. 1). 

When looking at the comparisons of the PA-II vs AQMS units as a function of specific 
humidity for an individual co-located pair, they are somewhat like the aggregated 
scatterplot. Durham (Fig. 13), Fayetteville (Fig. 14), Raleigh (Fig. 16), and Triple Oak (Fig. 
17) all see positive slopes for all three specific humidity bins. These slopes range from 
1.15–1.51. Asheville (Fig. 11), Charlotte (Fig. 12), Greensboro (Fig. 15), and Winston-
Salem (Fig. 18) all have at least one specific humidity bin with a slope at or less than 1.0. 
The high specific humidity bin for Asheville has a slope of 0.82, the low specific humidity 
bin for Charlotte has a slope of 0.93, the middle specific humidity bin for Greensboro has 
a slope of 0.97, and the low specific humidity bin for Winston-Salem has a slope of 1.00. 
Across all eight co-located pairs, the low specific humidity bin had an average slope of 
1.26, the medium specific humidity bin had an average slope of 1.19, and the high specific 
humidity bin had an average slope of 1.23. These average slopes show that the low 
specific humidity bin saw the most PA-II overestimation, while the medium bin saw the 
least overestimation. The low specific humidity bin saw the highest mean R2 value of 0.81, 
while the high specific humidity bin saw the lowest mean R2 of 0.74.  

Discussion 
For all eight co-located sites, the PA-II units showed overestimation at high RH, which 

was anticipated. Something that was unexpected was the continued overestimation at the 
middle and low RH bins. In previous research, there were not many claims regarding the 
PA-II performance at middle and low RH levels. Because of this, it was assumed that the 
PA-II generally showed less overestimation and tended to agree more with the reference 
monitors at lower humidity. This leads to the question regarding RH bin sizes. Ardon-Dryer 
et al. (2020) defined high RH as RH > 90% and low RH as RH < 40%, while this study 
used high RH as RH > 85% and low RH as RH <= 60%. In this study, the bins were 
chosen to minimize skew, which caused the high RH bin to be reduced to 85% and the 
low RH bin to increase to 60%. While perusing the data in the preliminary stages of this 
project, it was clear that there were few hours of data with low RH, meaning a cut-off of 
40% would cause the low RH bin to have little population. Evidently, this could end up 



being a major discrepancy because with these results, we cannot definitively say that only 
high RH caused PA-II overestimation. Another question to consider is climate differences. 
Ardon-Dryer et al. (2020) used PA-II units in Salt Lake City, Utah; Denver, Colorado; San 
Francisco, California; and Vallejo, California. These four climates are in the western 
United States, which is known to be drier than the east. A low RH in NC during the summer 
is more than likely going to be at least a mid-range RH for the four cities used in Ardon-
Dryer et al. (2020). Since a large percentage of hourly data in NC is going to be during 
times of at least moderate humidity (middle or high RH bin), it may be necessary to define 
a lower threshold for humidity at which the PA-II begins to significantly overestimate PM2.5 
concentrations.  

The results for PA-II vs AQMS performance as a function of specific humidity were not 
as consistent as they were for RH. Unlike RH, the high specific humidity bin saw an 
average R2 value that was less than the middle or low bin. This is likely attributed to the 
high specific humidity bin not being set at an appropriate value. As previously stated, the 
lack of previous literature investigating the PA-II at different levels of specific humidity left 
severe uncertainty regarding the correct bin widths. The results suggest that the linear 
regression line on average did not do as good of a job for the high specific humidity bin 
as it did with the low specific humidity bin. This means that the data was more variable 
and not as organized for higher specific humidity, which further leads to the concern that 
the binning methodology needs refinement. Additionally, the middle specific humidity bin 
saw much higher data representation, with 63% of all hours residing in this bin. Based on 
the average slopes, the low specific humidity bin saw the most overestimation, which 
does not align with the trend for RH. However, the average slopes for each three bins 
were all very similar.   

Conclusion 
The Canadian wildfire smoke intrusion of June and July 2023 provided an opportunity 

to study how low-cost PA-II units performed against expensive EPA AQMS in NC. 
Incorporating RH analysis into PA-II performance allowed for the comparison of this study 
to previous literature. Overall, the PA-II overestimated at high RH, which agreed with 
previous research. There was a disparity though at lower RH values. Previous research 
did not find significant overestimation at lower RH values, but this research did. This 
discrepancy could be attributed to NC being in a more humid climate, meaning that high 
RH persists most of the season. Among PA-II units located in the southeastern United 
States, there is likely always going to be overestimation, at least during the summer 
months when humidity is high.  

The specific humidity analysis was introduced to potentially find an alternative 
moisture variable that affects reported PA-II PM2.5 concentrations. Specific humidity is 
independent of temperature, meaning it is a better measure of the true vapor content of 
the atmosphere. Results from this study are inconclusive based on the uncertainty 
regarding proper bin size for specific humidity values. The results were not the same as 
RH (i.e., higher slopes for low bin, indicating more overestimation), meaning that for a 
contradictory claim to be made (i.e. more overestimation for low humidity values), more 
research is needed. 



There is also the possibility that the concentrated wildfire smoke caused unknown 
variability in how the PA-II reports its PM2.5 concentrations. It is known that the PA-II 
overestimates during high RH, but what about when there is a high concentration of 
wildfire smoke as well? There could be chemistry taking place between water vapor and 
smoke particles in the air, causing changes in the reported PM2.5 concentration from the 
PA-II particulate sensor. 

Residents of NC should be cautious about PA-II data. The best source for accurate air 
quality data is still AQMS – their frequent maintenance and calibration ensure that 
accurate air quality is measured around the clock. The EPA Fire and Smoke map is a 
fantastic tool to use to obtain real time air quality because they preprocess the PA-II data 
and apply a correction before displaying it on the map. Users of the EPA Fire and Smoke 
map can safely assume that the PA-II data displayed on the site is trustworthy. 
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Figure 1. Aggregated comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for all co-located pairs 

as a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% 

< RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in 

each panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 

 

Figure 2. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Asheville co-located pair as a 

function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% < RH 

<= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in each 

panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 



 

Figure 3. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Charlotte co-located pair as 

a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% < 

RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in 

each panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 

 

Figure 4. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Durham co-located pair as a 

function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% < RH 

<= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in each 

panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 



 

Figure 5. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Fayetteville co-located pair 

as a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% 

< RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in 

each panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 

 

Figure 6. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Greensboro co-located pair 

as a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% 

< RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in 

each panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 

 



 

Figure 7. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Raleigh co-located pair as a 

function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% < RH 

<= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in each 

panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 

 

Figure 8. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Triple Oak co-located pair as 

a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 60% < 

RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line in 

each panel represents the line of best fit, with the corresponding slope and R2 value. The number of data 

points in each panel is represented by n. 



 

Figure 9. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Winston-Salem co-located 

pair as a function of Relative Humidity. The left, middle, and right panels represent PM2.5 for RH <= 60%, 

60% < RH <= 85%, and 85% < RH. The dotted black line represents the 1:1 comparison. The solid red line 

in each panel represents the line of best fit, with the corresponding slope and R2 value. The number of 

data points in each panel is represented by n. 

  



 

 

Figure 10. Aggregated comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for all co-located pairs 

as a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 

 

 

Figure 11. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Asheville co-located pair as 

a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 

 



 

Figure 12. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Charlotte co-located pair as 

a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 

 

Figure 13. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Durham co-located pair as 

a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 



Figure 14. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Fayetteville co-located pair 

as a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 

 

Figure 15. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Greensboro co-located pair 

as a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 



 

Figure 16. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Raleigh co-located pair as a 

function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 10 

g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 

 

Figure 17. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Triple Oak co-located pair 

as a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g kg-1, 

10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The solid 

red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 



 

Figure 18. Comparison of PA-II vs AQMS PM2.5 concentrations (µg m-3) for the Winston-Salem co-located 

pair as a function of Specific Humidity (q). The left, middle, and right panels represent PM2.5 for q <= 10 g 

kg-1, 10 g kg-1 < q <= 16 g kg-1 and 16 g kg-1 < q. The dotted black line represents the 1:1 comparison. The 

solid red line in each panel represents the line of best fit, with the corresponding slope and R2 value. The 

number of data points in each panel is represented by n. 
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