
 University of North Carolina Asheville

Journal of Undergraduate Research

Asheville, North Carolina

 May 2023

Application of Robotic Arm Control using

Computer Vision and Object Detection

Techniques

Sarah Vyvyan

Engineering - Mechatronics

The University of North Carolina Asheville

One University Heights

Asheville, North Carolina 28804 USA

Faculty Advisor: Dr. Eli Buckner

Abstract

The increased technological advancements in and utilization of robotic systems have
greatly improved efficiency and safety in many areas of society, from industrial and
manufacturing environments to medicine and healthcare. These robotic systems are often
used to recognize or search for certain objects and perform actions on them, such as
finding an object on a conveyor belt and moving it to a new location. Embedded cameras
and computer vision systems are often implemented in this object detection and
recognition process. This project demonstrates this concept by having a 4-jointed robotic
arm with an embedded RGB D camera to recognize an object, specifically a human hand
in front of a white backdrop, and determine its 3D location in space. The process of
determining the object's location implements a simple threshold-based image
segmentation method as well as uses the depth image provided by the embedded
camera. Once a 3D location of the hand is determined, the arm will move the end effector
to that location and follow the hand. This is done by controlling the angles of rotation of
the arm’s 4 joints through numerical inverse kinematics. The image segmentation method
was tested on 113 different images of hands with solid white backgrounds. This method
achieved a 98.2% accuracy in detecting a hand and a 95.5% accuracy in locating the
center of mass within the actual boundaries of the hand. The inverse kinematics

successfully moved the end effector of the robot within range of grabbing the hand 100%
of the time and successfully moved it within 5 centimeters of the hand 70% of the time.

1. Introduction

Robotic systems have been implemented in many different environments where they
must have the ability to detect and respond to their surroundings. This ability is beneficial
in many different assistive roles, from assisting factory workers by being able to detect
and move large objects on a conveyor belt to being able to help someone who has lost a
limb or suffered from other neuromuscular trauma by having prosthetics and exoskeletons
that can predict human movements based on the surrounding environment. This ability
or task can be accomplished through computer vision and object detection, implementing
methods as complicated as neural networks to more simple methods such as color
threshold-based segmentation. Implementation of and advancing these different object
detection methods within robotics is a topic of great interest and continuing research. This
report explores the use of image segmentation, the process of taking an image and
segmenting it into different sections, for example, the foreground and background [1], to
determine the location of an object and move the end effector of a robotic arm to that
location. First, this report will use a threshold-based-image segmentation method that will
be used to determine the 2D center of mass of someone's hand. The image or video of
the hand will be captured using an embedded RGB D (red, green, blue, and depth)
camera that is located on the end of the robotic arm. Once the center of mass of the hand
has been located, the end effector of the robotic arm will be moved to its location. This
will be done by implementing a numerical inverse kinematics method that will predict the
needed positions and amounts of rotation for the robotic arm’s 4 joints that will minimize
the distance or error between the location of the hand and the end effector, and bring the
robot to the hand. Finally, this report will examine the results and accuracy of the use of
this image segmentation method in object detection and the success of the inverse
kinematics in moving the robotic arm to the necessary location.

2. Materials and Specifications

2.1. Hardware

2.1.1 Quanser QArm

This project will be using a Quanser QArm as the robotic arm to be controlled. The QArm
is a 4-degree-of-freedom robotic arm with an embedded RGB D (red, green, blue, and
depth) camera and a tendon-based two-stage gripper on the end. The QArm can be
interfaced through MATLAB® and Simulink® as well as through PythonTM and ROSTM. This
project will be using MATLAB® and Simulink® to interface with and control the arm. The

QArm can be controlled by adjusting the position of its joints (position mode) as well as
by adjusting the current (current mode) [2]. In this project, the position mode will be the
main interface for control. When in the zeroed position, the end effector sits at a height of
0.49 meters and at a distance of 0.365 meters horizontally from the base. The joint
rotation limits are listed in the table below.

Figure 1. Labeled image of the Quanser QArm

Table 1. Joint Limitations of the Quanser QArm

Joint Limitations (radians)

Base +/- 2.967 rad

Shoulder +/- 1.843 rad

Elbow - 0.658 rad / +1.309
rad

Wrist +/- 2.793 rad

2.1.2 RGB D camera

To see and detect the robotic arm’s surroundings this project will be using the embedded
RGB D camera located on the QArm. This embedded camera is the Intel® RealSense™
Depth Camera D415. This camera will provide both an RGB image and a depth image.
The depth output resolution has a maximum of 1280 by 720. The RGB frame resolution
is 1920 by 1080 [3]. The camera has a depth operating range of around 0.16 meters to
10 meters [4].

Figure 2. Image of the Intel® RealSense™ Depth Camera D415

2.2.Software

2.2.1 MATLAB® and Simulink®

To interact with and control the robotic arm, this project will implement the use of
MathWorks® MATLAB® and Simulink®. MATLAB® is a programming and numeric
computing platform that is often used in control systems and computer vision applications
[5]. Simulink® is a MATLAB®-based graphical user interface from MathWorks® that uses
block diagrams for a model-based design for systems [6]. Simulink® is used often for
simulations. The Quanser QArm is compatible with both MATLAB® and Simulink® making
this programming language and interface a reliable and relatively easy-to-integrate choice
for the project.

3. Conceptual Framework

3.1. Image Segmentation

One very essential component to successfully having the robotic arm locate a hand in its
surroundings is object detection. This project implements a simple image segmentation
method to achieve successfully locating a hand. This image segmentation method is
based on a threshold. The camera on the robotic arm collects RGB D images. An image
containing red, green, and blue values is collected as well as an image containing depth
values in meters is collected.

Figure 3. Example of RGB versus depth image from the camera. The image of the left
is the RGB image of several objects sitting on the top of a table. The image on the left is
the depth image of the same scene.

 The initial approach was to compare the red and green values for each pixel in an image
and find a common ratio between the two values that is true for a majority of skin tones.
After examining 150 different images of hands, it was determined that a consistent ratio
between these two values was 1.2. This means that when there is an object in an image
that is a color similar to one’s skin it has a red value that is 1.2 times the green value.
Therefore, when analyzing the image provided by the camera, this method will search for
pixels containing a red value that is 1.2 times the green value and label that pixel as being
part of a hand. All other pixels will be considered the background and ignored in further
analysis. A matrix the size of the image is created containing a value of 1 if the pixel is
part of a hand and a 0 if it is not.

Figure 4. RGB image of hand compared to the segmented image. The image on the left
is the RGB image of the hand. The image on the right is the black and white segmented
image of the same hand. Everywhere in the image where a hand is detected is white,
the rest is black.

 Once it has been determined that a pixel is part of a hand or not, that information will
be used to determine if a hand is present and then used to calculate the 2D center of
mass of the hand.

3.2. Inverse Kinematics

This project implements the use of forward and inverse kinematics to move the end
effector of the robotic arm to the location of the hand. Inverse kinematics uses kinematic
equations to determine the motion required for a robot to reach a desired position [7]. The
first step in inverse kinematics is to set up the forward kinematics, which is done by
defining coordinate frames for each joint using the DH (Denavit-Hartenberg) convention
and determining the parameters needed to calculate the poses, or the position and
orientation, of each joint [1, p. 196]. Below is a model of the robotic arm (Figure 5) with
the DH coordinate frames and parameters defined. The parameters defined in table 2 are
used in equation (1) to calculate the pose of each joint with respect to the previous joint
[1, p. 198-199].

Figure 5. Simple Model of QArm with assigned DH frames for each joint including
variables representing actuation parameters (rotations of each joint) and variables
representing the length of the different sections of the arm.

Table 2. The DH parameters used to generate the poses of each joint. Each joint has
two rotational parameters and two translational parameters. These are based on the
rotations of each joint and their relative distances and angles to one another.

Joint 𝜃𝒋 𝒅𝒋 𝒓𝒋 𝛼𝒋

1 𝑞1 𝐿1 0 −𝜋

2

2 𝑞2 + 𝛽 −
𝜋

2
 0 √𝐿2

2 + 𝐿3
2 0

3 𝑞3 − 𝛽 0 0 −𝜋

2

4 𝑞4 0 0 0

End
Effector

0 𝐿5 + 𝐿4 0 0

(1)

 Once these parameters and frames are defined, the pose or position of the end effector
with respect to global can be found using the following pose algebra equation, equation
(2) [1, p. 199].

(2)

𝜉1 ⊕ 𝜉2
1 ⊕ 𝜉3

2 ⊕ 𝜉4
3 ⊕ 𝜉𝑒

4 = 𝜉𝑒

 Once this is computed the 𝑥, 𝑦, and 𝑧 coordinates of the end effector will be extracted

from this final pose. This can be used along with the 𝑥, 𝑦, and 𝑧 coordinates of the hand
to determine the error, which will be minimized using inverse kinematics. The next step
will be to numerically solve for the angles needed to move the end effector in a way that
will minimize this error. This is done by computing the equation below 5000 times to find
joint displacements that will successfully bring the end effector to the hand.

(3)
𝑞(𝑛 + 1) = 𝑞(𝑛) + 𝑇𝑠 ⋅ 𝐽+ ⋅ 𝑘 ⋅ 𝑒𝑟𝑟𝑜𝑟

 Equation (3) estimates where joint positions will need to be one timestep in the future.
When this is computed over and over again, where each time the new joint positions are
based on the previously calculated ones, it will eventually converge at a desired task
space. In this case, the task space consists of the end effector reaching the hand. In
equation (3), 𝐽+ is the pseudo-inverse Jacobian matrix, which depends on the partial
derivatives of the 𝑥, 𝑦, and 𝑧 coordinate equations [1, p.229]. The error is the location of
the hand with respect to global minus the location of the end effector with respect to
global. 𝑞(𝑛) is the previously calculated angles, and 𝑘 is a proportionality constant that is
derived through experimentation. Using this method, a MATLAB® function was created
that takes in the current angles of the robot's joints and the 𝑥, 𝑦, and 𝑧 coordinates of the
hand and computes the needed angles through this iterative process.

4. Implementation

4.1. Step 1: Segment the Image Provided by the Camera

The first step in this process is to take a picture or in this case one frame of a video, from
the embedded RGB D camera on the end of the robotic arm and segment this image.
Using the threshold-based image segmentation method a new image is created where
every pixel that has a red value 1.2 times the size of the green value is equal to one and
all other pixels are set equal to 0.

Figure 6. Image of hand taken with the camera and its segmented image. The Image
on the right is the RGB image of the hand. The image on the left is the black and white
segmented image.

4.2. Step 2: Detect Hand

Once the segmented image is created an average of all the values in this binary matrix is
calculated, if that value is above a certain threshold, a hand is considered present, if not,
a hand will not be detected. This ensures that if there is not a hand present and the
background has a small defect where the image segmentation method recognizes pixels
with this red-to-green value ratio, it does not think that there is a hand. In this particular
case, the threshold value used was 0.1, meaning that if less than 10% of the image was
considered a hand, a hand was not found.

 4.3. Step 3: Locate the Center of Mass of the Hand

The 2D center of mass of the hand is computed by finding the center of the white pixels,
or values of 1 in the segmented image. In this calculation, it was assumed that all pixels
would be weighted equally, or have an equal mass of 1. Equation (4) is then used to find
the x and y of the center of mass. The values will be used later in the calculation of the
pose of the hand with respect to the camera.

(4)

𝑥𝑐 =
∑∞

𝑛=1 𝑀𝑛𝑥𝑛

∑∞
𝑛=1 𝑀

 𝑦𝑐 =
∑∞

𝑛=1 𝑀𝑛𝑦𝑛

∑∞
𝑛=1 𝑀

 Due to the limitations of the depth camera on the robot, calculating an accurate z
coordinate for the hand was not possible. This process simply sets the z coordinate of the
hand to a constant value of 0.25m. This value lies just past the end effector, ensuring that
the end effector will move forward just a small amount for every picture taken, still allowing
the robot to move forward in the desired direction, but also avoiding the inconsistent
values provided by the depth camera.

4.4. Step 4: Find the Global Pose of the Hand

The global x y and z coordinates are calculated for the hand by finding the pose of the
hand with respect to the end effector. Once this is computed the pose of the end effector
with respect to global will be calculated using forward kinematics. Using the pose of the
end effector with respect to global and the pose of the hand with respect to the end
effector the pose of the hand with respect to global can be calculated. This is done for
each image taken, or each frame of the video feed provided by the camera. This process
is done within a user-defined MATLAB® function titled FindHandLocation.

4.5. Step 5: Inverse Kinematics Function

The final step is to read the current angles of the robotic arm joints and use the previously
calculated position of the hand to determine how much the joints must be rotated to reach
the hand. This is done through the use of the inverse kinematics function that calculates
the desired joint positions to reach the hand by minimizing the error, or the difference
between where the hand is and where the end effector is. This process will be repeated
for every image taken by the camera, allowing the end effector to not only go to the
location of the hand but also follow the hand as it moves. This is done within the user-
defined MATLAB® function titled CameraIK.

4.6. Simulink® Model

This system was modeled and simulated using Simulink®. The Quanser QArm has
specific Simulink® blocks that must be present within the model to interface with the
control system embedded in the robot. These can be seen in the model below along with
the user-defined MATLAB® functions and blocks that perform the image processing and
inverse kinematics.

Figure 7. Image of the Simulink® model used to control the robotic arm. This model
includes the blocks required for the Quanser QArm as well as the blocks defined for
finding the center of mass of the hand and performing inverse kinematics.

5. Results

5.1. Image Segmentation Results

The hand detection process implemented a threshold-based image segmentation method
where the pixels containing red values 1.2 times the size of the green values were
considered a hand. This method was tested on 113 different images of hands in front of
white backgrounds. Of the 113, there were only two images where a hand was present
but not detected. In these cases, the general outline of the hand was segmented,
however, since a hand is only considered present if 10% of the image has been labeled
a hand, the algorithm did not detect the hand. In these two cases, the mid-section of the
hand had much higher green values than the other images, therefore, the ratio of 1.2
between the red and green values was no longer valid. This increased green value was
due to a significantly lighter skin tone and bright, almost unnatural lighting. Therefore,
these two cases were not considered a concern in the process since the lighting was
significantly different in these images than it would have been in the environment of the
robot.

Figure 8. Image of successfully detected hand. The image on the left is the RGB image
of hand. The image on the right is the segmented image. In this case, almost the entire
hand is recognized as a hand and cleanly segmented from the background.

Figure 9. Image of unsuccessfully detected hand. The image on the left is the RGB
image of the hand. The image on the right is the segmented image of the hand. In this
case, only the edges of the hand were detected, and therefore only the edges of the
hand were segmented properly. This caused a hand to not be detected since less than
10% of the image was considered a hand.

The hand detection method proved to have 98.2% accuracy in detecting a hand and
properly segmenting the image into the hand and background.

5.2. Locating Center of Mass Results

In terms of the center of mass calculation accuracy, two different tests were examined.
The first was whether the center of mass was found to lie within the bounds of where the
image segmenting algorithm labeled a hand (within the white portion of the segmented
image). The second test was whether or not the calculated center of mass was within the
actual bounds of the hand (somewhere between or on the wrist and fingertips). Of the
111 images that properly segmented the hand, 110 of them found the center of mass to
be within the white portion of the segmented image. Therefore, this method had an
accuracy of 99.1% for the first test. For the second test, of the 111 properly segmented
images 106 found the center of mass to lie within the actual bounds of the hand, having
an accuracy of 95.5% for the second test.

Figure 10. Image of Hand and its center of mass location that passed both tests. The
image of the left is the RGB image of the hand. The image on the right is the segmented
image of the hand with a red ‘x’ marking the calculated center of mass. In this case, the
center of mass was calculated to be in the palm of the hand.

Figure 11. Image of hand and center of mass that passed test 1.The image on the left
is the RGB image of the hand. The image of the right is the segmented image of the
hand with a red ‘x’ marking the calculated center of mass. In this image, the forearm
was also considered part of the hand. In this case, the center of mass was calculated to
be on the person’s forearm instead of being on the actual hand.

Figure 12. Image of hand that did not pass either test. The image on the left is the RGB
image of the hand. The image on the right is the segmented image of the hand where a
red ‘x’ marks the calculated center of mass of the hand. In this case, some of the arm of
the person was considered the hand. The center of mass was calculated to be on their
wrist, where they were wearing a dark blue watch that was not considered part of the
hand.

5.3. Inverse Kinematics

To determine the accuracy of the inverse kinematics process the location of the hand and
the trajectory of the end effector were monitored. The final location of the end effector
was compared with the average location of the hand in the case where the hand was held
still. The magnitude of the final error between the hand and end effector location was
computed for each run, there were 20 total runs. The success of reaching the hand was
based on the calculated magnitude of the error. 14 of the 20, 70%, measured a final error
magnitude less than 0.05m. 90% of the runs measured a final error magnitude less than
0.08m. And 100% of the runs measured a final error magnitude less than 0.1m. The
gripper on the end of the arm reaches roughly 0.12 meters past the end effector.
Therefore, in all of these cases, the gripper was within reach of the hand.

 Below is a graph displaying the average location of the hand in the 3D space and the
trajectory of the end effector. As can be seen, the end effector moves in the direction of
the hand. Below is also a graph of the final location of the end effector and the average
location of the hand.

Figure 13. Final location of the end effector and its trajectory vs. location of the hand.
The figure on the left shows the final location of the end effector in blue and the location
of the hand in green. As can be seen they are very close together, however not exactly
in the same spot. The image on the right shows the trajectory of the location of the end
effector in blue and the location of the hand in green. As can be seen the end effector
does move in the direction of the hand. This test had a final error magnitude of 0.048
meters.

Figure 14. Final location of the end effector and its trajectory vs. location of the hand.
The figure on the left shows the final location of the end effector in blue and the location
of the hand in magenta. As can be seen they are very close together, however not
exactly in the same spot. The image on the right shows the trajectory of the location of
the end effector in blue and the location of the hand in magenta. As can be seen the
end effector does move in the direction of the hand. This test had a final error
magnitude of 0.018 meters.

6. Conclusion

This project uses a threshold-based image segmentation method along with numerical
inverse kinematics to successfully control a robotic arm following a human hand. The
image segmentation technique proved to have an accuracy of 98.2% in detecting a hand
and a 95.5% accuracy in finding a reliable center of mass for the hand. There are several
areas where this project and approach could be improved. In the image segmentation
process having a white background was required to successfully see and detect a hand.
This does provide limitations on the environment where this robotic arm could be used
for this purpose. Using a more robust image segmentation method, or even introducing
concepts of neural networks could provide an object detection algorithm that would be
valid in a wider range of environments. In terms of the kinematics and motion of the robotic
arm itself, there were limitations to the robot's function due to the nature of the RGB D
camera. The camera is not able to obtain accurate depth readings when an object is
within 0.16m of the camera. This means that when an object is close enough for the robot
to stop or even grab something, the robot is not aware of it. Therefore, this robot can
successfully follow objects and locate them. However, it cannot successfully stop and
pick up or perform another action on an object when implementing computer vision with
its embedded camera. Despite these limitations and areas of possible improvement, this
project successfully demonstrates the use of computer vision-based control and the
implementation of numerical inverse kinematics with a robotic arm system.

7. Acknowledgements

I would like to express my sincere gratitude to the engineering department at UNC

Asheville who made this project possible through providing the necessary resources

and equipment. I would also specifically like to thank Dr. Eli Buckner for his patience,

guidance, and support, without it this project would not have been possible.

References:

[1] P. I. Corke, Robotics, Vision and Control: fundamental algorithms in
MATLAB®. Cham, Switzerland: Springer, 2017.

[2] “Qarm,” Quanser. https://www.quanser.com/products/qarm/#overview. (accessed:
Mar. 25, 2023)

[3] “Intel® realsense™ depth camera D415,” Intel RealSense.
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d415.html.
(accessed Mar. 26, 2023)

[4] “Intel® realsense™ depth camera D415 product specifications,” Intel.com.
https://ark.intel.com/content/www/us/en/ark/products/128256/intel-realsense-depth-
camera-d415.html. (accessed: Mar. 25, 2023).

[5] “Matlab,” MathWorks. https://www.mathworks.com/products/matlab.html.
(accessed Mar. 29, 2023)

[6] “Simulink,” MathWorks. https://www.mathworks.com/products/simulink.html.
(accessed Mar. 29, 2023)

[7] “What Is Inverse Kinematics?,” MathWorks.
https://www.mathworks.com/discovery/inverse-
kinematics.html#:~:text=Inverse%20kinematics%20is%20the%20use. (accessed
Mar. 19, 2023)

