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Abstract 

 

The increased technological advancements in and utilization of robotic systems have 
greatly improved efficiency and safety in many areas of society, from industrial and 
manufacturing environments to medicine and healthcare. These robotic systems are often 
used to recognize or search for certain objects and perform actions on them, such as 
finding an object on a conveyor belt and moving it to a new location. Embedded cameras 
and computer vision systems are often implemented in this object detection and 
recognition process. This project demonstrates this concept by having a 4-jointed robotic 
arm with an embedded RGB D camera to recognize an object, specifically a human hand 
in front of a white backdrop, and determine its 3D location in space. The process of 
determining the object's location implements a simple threshold-based image 
segmentation method as well as uses the depth image provided by the embedded 
camera. Once a 3D location of the hand is determined, the arm will move the end effector 
to that location and follow the hand. This is done by controlling the angles of rotation of 
the arm’s 4 joints through numerical inverse kinematics. The image segmentation method 
was tested on 113 different images of hands with solid white backgrounds. This method 
achieved a 98.2% accuracy in detecting a hand and a 95.5% accuracy in locating the 
center of mass within the actual boundaries of the hand. The inverse kinematics 



successfully moved the end effector of the robot within range of grabbing the hand 100% 
of the time and successfully moved it within 5 centimeters of the hand 70% of the time. 

1.     Introduction 
 
Robotic systems have been implemented in many different environments where they 
must have the ability to detect and respond to their surroundings. This ability is beneficial 
in many different assistive roles, from assisting factory workers by being able to detect 
and move large objects on a conveyor belt to being able to help someone who has lost a 
limb or suffered from other neuromuscular trauma by having prosthetics and exoskeletons 
that can predict human movements based on the surrounding environment. This ability 
or task can be accomplished through computer vision and object detection, implementing 
methods as complicated as neural networks to more simple methods such as color 
threshold-based segmentation. Implementation of and advancing these different object 
detection methods within robotics is a topic of great interest and continuing research. This 
report explores the use of image segmentation, the process of taking an image and 
segmenting it into different sections, for example, the foreground and background [1], to 
determine the location of an object and move the end effector of a robotic arm to that 
location. First, this report will use a threshold-based-image segmentation method that will 
be used to determine the 2D center of mass of someone's hand. The image or video of 
the hand will be captured using an embedded RGB D (red, green, blue, and depth) 
camera that is located on the end of the robotic arm. Once the center of mass of the hand 
has been located, the end effector of the robotic arm will be moved to its location. This 
will be done by implementing a numerical inverse kinematics method that will predict the 
needed positions and amounts of rotation for the robotic arm’s 4 joints that will minimize 
the distance or error between the location of the hand and the end effector, and bring the 
robot to the hand. Finally, this report will examine the results and accuracy of the use of 
this image segmentation method in object detection and the success of the inverse 
kinematics in moving the robotic arm to the necessary location. 
  

2.     Materials and Specifications 

2.1. Hardware 

2.1.1 Quanser QArm 

 
This project will be using a Quanser QArm as the robotic arm to be controlled. The QArm 
is a 4-degree-of-freedom robotic arm with an embedded RGB D (red, green, blue, and 
depth) camera and a tendon-based two-stage gripper on the end. The QArm can be 
interfaced through MATLAB® and Simulink® as well as through PythonTM and ROSTM. This 
project will be using MATLAB® and Simulink® to interface with and control the arm. The 



QArm can be controlled by adjusting the position of its joints (position mode) as well as 
by adjusting the current (current mode) [2]. In this project, the position mode will be the 
main interface for control. When in the zeroed position, the end effector sits at a height of 
0.49 meters and at a distance of 0.365 meters horizontally from the base. The joint 
rotation limits are listed in the table below.  
 

 
Figure 1. Labeled image of the Quanser QArm 

 

 
Table 1. Joint Limitations of the Quanser QArm 
 

Joint Limitations (radians) 

Base +/- 2.967 rad 

Shoulder +/- 1.843 rad 

Elbow - 0.658 rad  / +1.309 
rad 

Wrist +/- 2.793 rad 

 

2.1.2 RGB D camera 

 
To see and detect the robotic arm’s surroundings this project will be using the embedded 
RGB D camera located on the QArm. This embedded camera is the Intel® RealSense™ 
Depth Camera D415. This camera will provide both an RGB image and a depth image. 
The depth output resolution has a maximum of 1280 by 720. The RGB frame resolution 
is 1920 by 1080 [3]. The camera has a depth operating range of around 0.16 meters to 
10 meters [4].  
 



 
Figure 2. Image of the Intel® RealSense™ Depth Camera D415 

 

2.2.Software 

2.2.1 MATLAB® and Simulink® 

 
To interact with and control the robotic arm, this project will implement the use of 
MathWorks® MATLAB® and Simulink®. MATLAB® is a programming and numeric 
computing platform that is often used in control systems and computer vision applications 
[5]. Simulink® is a MATLAB®-based graphical user interface from MathWorks® that uses 
block diagrams for a model-based design for systems [6]. Simulink® is used often for 
simulations. The Quanser QArm is compatible with both MATLAB® and Simulink® making 
this programming language and interface a reliable and relatively easy-to-integrate choice 
for the project. 
 

3.     Conceptual Framework 

3.1. Image Segmentation 

 
One very essential component to successfully having the robotic arm locate a hand in its 
surroundings is object detection. This project implements a simple image segmentation 
method to achieve successfully locating a hand. This image segmentation method is 
based on a threshold. The camera on the robotic arm collects RGB D images. An image 
containing red, green, and blue values is collected as well as an image containing depth 
values in meters is collected.  
 



      
Figure 3. Example of RGB versus depth image from the camera. The image of the left 
is the RGB image of several objects sitting on the top of a table. The image on the left is 
the depth image of the same scene. 

 
 

   The initial approach was to compare the red and green values for each pixel in an image 
and find a common ratio between the two values that is true for a majority of skin tones. 
After examining 150 different images of hands, it was determined that a consistent ratio 
between these two values was 1.2. This means that when there is an object in an image 
that is a color similar to one’s skin it has a red value that is 1.2 times the green value. 
Therefore, when analyzing the image provided by the camera, this method will search for 
pixels containing a red value that is 1.2 times the green value and label that pixel as being 
part of a hand. All other pixels will be considered the background and ignored in further 
analysis. A matrix the size of the image is created containing a value of 1 if the pixel is 
part of a hand and a 0 if it is not. 
 
 

  
Figure 4. RGB image of hand compared to the segmented image. The image on the left 
is the RGB image of the hand. The image on the right is the black and white segmented 
image of the same hand. Everywhere in the image where a hand is detected is white, 
the rest is black. 

 
 



   Once it has been determined that a pixel is part of a hand or not, that information will 
be used to determine if a hand is present and then used to calculate the 2D center of 
mass of the hand. 
 

3.2. Inverse Kinematics 

 

This project implements the use of forward and inverse kinematics to move the end 
effector of the robotic arm to the location of the hand. Inverse kinematics uses kinematic 
equations to determine the motion required for a robot to reach a desired position [7]. The 
first step in inverse kinematics is to set up the forward kinematics, which is done by 
defining coordinate frames for each joint using the DH (Denavit-Hartenberg) convention 
and determining the parameters needed to calculate the poses, or the position and 
orientation, of each joint [1, p. 196]. Below is a model of the robotic arm (Figure 5)  with 
the DH coordinate frames and parameters defined. The parameters defined in table 2 are 
used in equation (1) to calculate the pose of each joint with respect to the previous joint 
[1, p. 198-199].  
 

 
Figure 5. Simple Model of QArm with assigned DH frames for each joint including 
variables representing actuation parameters (rotations of each joint) and variables 
representing the length of the different sections of the arm. 



 
 

Table 2. The DH parameters used to generate the poses of each joint. Each joint has 
two rotational parameters and two translational parameters. These are based on the 
rotations of each joint and their relative distances and angles to one another. 

 

Joint  𝜃𝒋 𝒅𝒋 𝒓𝒋 𝛼𝒋 

1 𝑞1 𝐿1 0 −𝜋

2
 

2 𝑞2 + 𝛽 −
𝜋

2
 0 √𝐿2

2 + 𝐿3
2 0 

3 𝑞3 − 𝛽 0 0 −𝜋

2
 

4 𝑞4 0 0 0 

End 
Effector 

0 𝐿5 + 𝐿4 0 0 

 
 
 

(1) 

 
 

 

   Once these parameters and frames are defined, the pose or position of the end effector 
with respect to global can be found using the following pose algebra equation, equation 
(2) [1, p. 199].  
 

(2) 

𝜉1 ⊕ 𝜉2
1 ⊕ 𝜉3

2 ⊕ 𝜉4
3 ⊕ 𝜉𝑒

4  = 𝜉𝑒   
 
 
   Once this is computed the 𝑥, 𝑦, and 𝑧 coordinates of the end effector will be extracted 

from this final pose. This can be used along with the 𝑥, 𝑦, and 𝑧 coordinates of the hand 
to determine the error, which will be minimized using inverse kinematics. The next step 
will be to numerically solve for the angles needed to move the end effector in a way that 
will minimize this error. This is done by computing the equation below 5000 times to find 
joint displacements that will successfully bring the end effector to the hand.  
 

(3) 
𝑞(𝑛 + 1)  =  𝑞(𝑛)  +  𝑇𝑠 ⋅ 𝐽+ ⋅ 𝑘 ⋅ 𝑒𝑟𝑟𝑜𝑟 

 
 



   Equation (3)  estimates where joint positions will need to be one timestep in the future. 
When this is computed over and over again, where each time the new joint positions are 
based on the previously calculated ones, it will eventually converge at a desired task 
space. In this case, the task space consists of the end effector reaching the hand. In 
equation (3), 𝐽+ is the pseudo-inverse Jacobian matrix, which depends on the partial 
derivatives of the 𝑥, 𝑦, and 𝑧 coordinate equations [1, p.229]. The error is the location of 
the hand with respect to global minus the location of the end effector with respect to 
global. 𝑞(𝑛) is the previously calculated angles, and 𝑘 is a proportionality constant that is 
derived through experimentation. Using this method, a MATLAB® function was created 
that takes in the current angles of the robot's joints and the  𝑥, 𝑦, and 𝑧 coordinates of the 
hand and computes the needed angles through this iterative process.  

 

4.     Implementation 

4.1. Step 1: Segment the Image Provided by the Camera 

 

The first step in this process is to take a picture or in this case one frame of a video, from 
the embedded RGB D camera on the end of the robotic arm and segment this image. 
Using the threshold-based image segmentation method a new image is created where 
every pixel that has a red value 1.2 times the size of the green value is equal to one and 
all other pixels are set equal to 0.  

 

    
Figure 6. Image of hand taken with the camera and its segmented image. The Image 
on the right is the RGB image of the hand. The image on the left is the black and white 
segmented image. 
 
 

 



4.2. Step 2: Detect Hand  

 
Once the segmented image is created an average of all the values in this binary matrix is 
calculated, if that value is above a certain threshold, a hand is considered present, if not, 
a hand will not be detected. This ensures that if there is not a hand present and the 
background has a small defect where the image segmentation method recognizes pixels 
with this red-to-green value ratio, it does not think that there is a hand. In this particular 
case, the threshold value used was 0.1, meaning that if less than 10% of the image was 
considered a hand, a hand was not found. 

 4.3. Step 3: Locate the Center of Mass of the Hand 

 
The 2D center of mass of the hand is computed by finding the center of the white pixels, 
or values of 1 in the segmented image. In this calculation, it was assumed that all pixels 
would be weighted equally, or have an equal mass of 1.  Equation (4) is then used to find 
the x and y of the center of mass. The values will be used later in the calculation of the 
pose of the hand with respect to the camera. 

 
 

(4) 

𝑥𝑐 =  
∑∞

𝑛=1 𝑀𝑛𝑥𝑛

∑∞
𝑛=1 𝑀

             𝑦𝑐 =  
∑∞

𝑛=1 𝑀𝑛𝑦𝑛

∑∞
𝑛=1 𝑀

 

 
 

   Due to the limitations of the depth camera on the robot, calculating an accurate z 
coordinate for the hand was not possible. This process simply sets the z coordinate of the 
hand to a constant value of 0.25m. This value lies just past the end effector, ensuring that 
the end effector will move forward just a small amount for every picture taken, still allowing 
the robot to move forward in the desired direction, but also avoiding the inconsistent 
values provided by the depth camera.  
 

4.4. Step 4: Find the Global Pose of the Hand 

 
The global x y and z coordinates are calculated for the hand by finding the pose of the 
hand with respect to the end effector. Once this is computed the pose of the end effector 
with respect to global will be calculated using forward kinematics. Using the pose of the 
end effector with respect to global and the pose of the hand with respect to the end 
effector the pose of the hand with respect to global can be calculated. This is done for 
each image taken, or each frame of the video feed provided by the camera. This process 
is done within a user-defined MATLAB® function titled FindHandLocation. 
 



4.5. Step 5: Inverse Kinematics Function 
 

The final step is to read the current angles of the robotic arm joints and use the previously 
calculated position of the hand to determine how much the joints must be rotated to reach 
the hand. This is done through the use of the inverse kinematics function that calculates 
the desired joint positions to reach the hand by minimizing the error, or the difference 
between where the hand is and where the end effector is. This process will be repeated 
for every image taken by the camera, allowing the end effector to not only go to the 
location of the hand but also follow the hand as it moves. This is done within the user-
defined MATLAB® function titled CameraIK.  
 

4.6. Simulink® Model 

 
This system was modeled and simulated using Simulink®. The Quanser QArm has 
specific Simulink® blocks that must be present within the model to interface with the 
control system embedded in the robot. These can be seen in the model below along with 
the user-defined MATLAB® functions and blocks that perform the image processing and 
inverse kinematics.  

 

 
Figure 7. Image of the Simulink® model used to control the robotic arm. This model 
includes the blocks required for the Quanser QArm as well as the blocks defined for 
finding the center of mass of the hand and performing inverse kinematics. 

 

 



5.     Results 

5.1. Image Segmentation Results 

 
The hand detection process implemented a threshold-based image segmentation method 
where the pixels containing red values 1.2 times the size of the green values were 
considered a hand. This method was tested on 113 different images of hands in front of 
white backgrounds. Of the 113, there were only two images where a hand was present 
but not detected. In these cases, the general outline of the hand was segmented, 
however, since a hand is only considered present if 10% of the image has been labeled 
a hand, the algorithm did not detect the hand. In these two cases, the mid-section of the 
hand had much higher green values than the other images, therefore, the ratio of 1.2 
between the red and green values was no longer valid. This increased green value was 
due to a significantly lighter skin tone and bright, almost unnatural lighting. Therefore, 
these two cases were not considered a concern in the process since the lighting was 
significantly different in these images than it would have been in the environment of the 
robot. 
 

     
Figure 8. Image of successfully detected hand. The image on the left is the RGB image 
of hand. The image on the right is the segmented image. In this case, almost the entire 
hand is recognized as a hand and cleanly segmented from the background. 
 
 



     
Figure 9. Image of unsuccessfully detected hand. The image on the left is the RGB 
image of the hand. The image on the right is the segmented image of the hand. In this 
case, only the edges of the hand were detected, and therefore only the edges of the 
hand were segmented properly. This caused a hand to not be detected since less than 
10% of the image was considered a hand. 
 
The hand detection method proved to have 98.2% accuracy in detecting a hand and 
properly segmenting the image into the hand and background.  
 

5.2. Locating Center of Mass Results 

 
In terms of the center of mass calculation accuracy, two different tests were examined. 
The first was whether the center of mass was found to lie within the bounds of where the 
image segmenting algorithm labeled a hand (within the white portion of the segmented 
image). The second test was whether or not the calculated center of mass was within the 
actual bounds of the hand (somewhere between or on the wrist and fingertips). Of the 
111 images that properly segmented the hand, 110 of them found the center of mass to 
be within the white portion of the segmented image. Therefore, this method had an 
accuracy of 99.1% for the first test. For the second test, of the 111 properly segmented 
images 106 found the center of mass to lie within the actual bounds of the hand, having 
an accuracy of 95.5% for the second test.  
 
 
 



    
Figure 10. Image of Hand and its center of mass location that passed both tests. The 
image of the left is the RGB image of the hand. The image on the right is the segmented 
image of the hand with a red ‘x’ marking the calculated center of mass. In this case, the 
center of mass was calculated to be in the palm of the hand. 

 

    
Figure 11. Image of hand and center of mass that passed test 1.The image on the left 
is the RGB image of the hand. The image of the right is the segmented image of the 
hand with a red ‘x’ marking the calculated center of mass. In this image, the forearm 
was also considered part of the hand. In this case, the center of mass was calculated to 
be on the person’s forearm instead of being on the actual hand. 
 
 



    
Figure 12. Image of hand that did not pass either test. The image on the left is the RGB 
image of the hand. The image on the right is the segmented image of the hand where a 
red ‘x’ marks the calculated center of mass of the hand. In this case, some of the arm of 
the person was considered the hand. The center of mass was calculated to be on their 
wrist, where they were wearing a dark blue watch that was not considered part of the 
hand. 

5.3. Inverse Kinematics  

 
To determine the accuracy of the inverse kinematics process the location of the hand and 
the trajectory of the end effector were monitored. The final location of the end effector 
was compared with the average location of the hand in the case where the hand was held 
still. The magnitude of the final error between the hand and end effector location was 
computed for each run, there were 20 total runs. The success of reaching the hand was 
based on the calculated magnitude of the error. 14 of the 20, 70%, measured a final error 
magnitude less than 0.05m.  90% of the runs measured a final error magnitude less than 
0.08m. And 100% of the runs measured a final error magnitude less than 0.1m. The 
gripper on the end of the arm reaches roughly 0.12 meters past the end effector. 
Therefore, in all of these cases, the gripper was within reach of the hand.  
 
   Below is a graph displaying the average location of the hand in the 3D space and the 
trajectory of the end effector. As can be seen, the end effector moves in the direction of 
the hand. Below is also a graph of the final location of the end effector and the average 
location of the hand. 
 
 



    
Figure 13. Final location of the end effector and its trajectory vs. location of the hand. 
The figure on the left shows the final location of the end effector in blue and the location 
of the hand in green. As can be seen they are very close together, however not exactly 
in the same spot. The image on the right shows the trajectory of the location of the end 
effector in blue and the location of the hand in green. As can be seen the end effector 
does move in the direction of the hand. This test had a final error magnitude of 0.048 
meters.  
 
 

    
Figure 14. Final location of the end effector and its trajectory vs. location of the hand. 
The figure on the left shows the final location of the end effector in blue and the location 
of the hand in magenta. As can be seen they are very close together, however not 
exactly in the same spot. The image on the right shows the trajectory of the location of 
the end effector in blue and the location of the hand in magenta. As can be seen the 
end effector does move in the direction of the hand. This test had a final error 
magnitude of 0.018 meters.  
 
 



6.     Conclusion 
 

This project uses a threshold-based image segmentation method along with numerical 
inverse kinematics to successfully control a robotic arm following a human hand. The 
image segmentation technique proved to have an accuracy of 98.2% in detecting a hand 
and a 95.5% accuracy in finding a reliable center of mass for the hand. There are several 
areas where this project and approach could be improved. In the image segmentation 
process having a white background was required to successfully see and detect a hand. 
This does provide limitations on the environment where this robotic arm could be used 
for this purpose. Using a more robust image segmentation method, or even introducing 
concepts of neural networks could provide an object detection algorithm that would be 
valid in a wider range of environments. In terms of the kinematics and motion of the robotic 
arm itself, there were limitations to the robot's function due to the nature of the RGB D 
camera. The camera is not able to obtain accurate depth readings when an object is 
within 0.16m of the camera. This means that when an object is close enough for the robot 
to stop or even grab something, the robot is not aware of it. Therefore, this robot can 
successfully follow objects and locate them. However, it cannot successfully stop and 
pick up or perform another action on an object when implementing computer vision with 
its embedded camera.  Despite these limitations and areas of possible improvement, this 
project successfully demonstrates the use of computer vision-based control and the 
implementation of numerical inverse kinematics with a robotic arm system.  
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